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ABSTRACT

Canonical correlation analysis (CCA)-based statistical corrections are applied to seasonal mean pre-

cipitation and temperature hindcasts of the individual models from the North American Multimodel En-

semble project to correct biases in the positions and amplitudes of the predicted large-scale anomaly patterns.

Corrections are applied in 15 individual regions and then merged into globally corrected forecasts. The CCA

correction dramatically improves the RMS error skill score, demonstrating that model predictions contain

correctable systematic biases in mean and amplitude. However, the corrections do not materially improve the

anomaly correlation skills of the individual models for most regions, seasons, and lead times, with the ex-

ception of October–December precipitation in Indonesia and eastern Africa. Models with lower uncorrected

correlation skill tend to benefit more from the correction, suggesting that their lower skills may be due to

correctable systematic errors. Unexpectedly, corrections for the globe as a single region tend to improve the

anomaly correlation at least as much as the merged corrections to the individual regions for temperature, and

more so for precipitation, perhaps due to better noise filtering. The lack of overall improvement in correlation

may imply relatively mild errors in large-scale anomaly patterns. Alternatively, there may be such errors, but

the period of record is too short to identify them effectively but long enough to find local biases in mean and

amplitude. Therefore, statistical correction methods treating individual locations (e.g., multiple regression or

principal component regression) may be recommended for today’s coupled climate model forecasts. The

findings highlight that the performance of statistical postprocessing can be grossly overestimated without

thorough cross validation or evaluation on independent data.

1. Introduction

In principle, dynamical climate prediction models are

expected to produce more accurate climate predictions

than statistical models on seasonal to interannual time

scales. This expectation is based on the fact that dy-

namical models make use of the often complex and

nonlinear physical laws governing oceanic and atmo-

spheric behavior, while statistical models use only

relationships (often linear) gleaned from finite records

of observational data. Operationally, however, dynam-

ical models did not show clear superiority over statistical

models in predicting monthly or seasonally averaged

climate until near the turn of the twenty-first century, as

more advanced data assimilationmethods and computer

power finally enabled them to perform closer to their

potential.

While comprehensive coupled ocean–atmosphere dy-

namical models are now heavily relied upon for sea-

sonal climate predictions, they still have aspects in need

of further improvement. Their systematic errors, or

biases, vary by model, season, lead time, and location.

The presence of biases creates an opportunity for sta-

tistical models to detect and correct them, resulting in

improved final forecast quality. Such methods can be
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used to modify the positions and/or amplitudes of large-

scale patterns and also to refine the details of anomaly

patterns for local downscaling. Here, we apply statistical

corrections to the models in the North American Mul-

timodel Ensemble (NMME) and focus on the correction

of biases in the positions and amplitude of the models’

predicted large-scale anomaly patterns.

The statistical treatment of systematic errors in the

positions and amplitudes of patterns in dynamical model

predictions is not new. Rukhovets et al. (1998) used sin-

gular value decomposition (SVD) to document the pat-

terns of 500-hPa height fields in medium-range forecasts

of a NOAA/National Centers for Environmental Pre-

diction (NCEP) model and their correspondences to ob-

served patterns that would enable a model pattern

calibration. Ward and Navarra (1997) and Smith and

Livezey (1999) used canonical correlation analysis (CCA)

to relate seasonal climate predictions or simulations (with

prescribed SST fields) of a general circulation model

(GCM) to the corresponding observations in large regions

of interest, with the potential to better calibrate the

forecasts. Similarly, Feddersen et al. (1999) used SVD to

postprocess precipitation predictions from a GCM, and

Mo and Straus (2002) used principal component re-

gression (PCR) with similar purpose for the climate in the

Northern Hemisphere as well as smaller regions. Moti-

vated by a severe drought in central southwestAsia during

the extended 1998–2000 La Niña, Tippett et al. (2003)
used CCA to correct GCM predictions of precipitation in

that region. Corrections by CCA, SVD, or PCR differ

primarily in the prefiltering of the datasets (Tippett et al.

2008). In all of the above studies, the GCM predictions

were forced by either predicted or observed SST, in con-

trast to today’s comprehensive dynamical model forecasts

in which the SST and climate are predicted simulta-

neously in a single-tier coupled model integration.

In phase one of the NMME project, hindcasts were

generated for global fields of SST, surface air temperature,

precipitation, and other variables from eight or more state-

of-the-art coupled GCMs (Kirtman et al. 2014). These

hindcastswere formonthly average climate extending toup

to 12 months into the future, spanning the 1982–2010 pe-

riod. Real-time predictions from the samemodels began in

2011, adding to the data archivewhere the hindcasts ended.

The purpose of this study is to determine whether

the commonly used multivariate statistical method of

CCA can improve the temporal anomaly correlation

skill of the individual NMME models, with the goal of

improving the predictions of the multimodel ensemble.

The anomaly correlation is used as the primary metric

because it measures the ability to reproduce the phasing

of the interannual variability of the climate. A secondary

verification measure, based on the mean squared error,

is also examined to see if local systematic biases are also

reduced by the CCA.

The data and the analysis methods used in the study

are described in section 2, followed by results, first for

forecasts of precipitation and then temperature, in sec-

tion 3. Concluding remarks and discussion are found in

section 4.

2. Data and methods

a. Data

The model data used here are hindcasts from eight

models of the NMME, spanning 1982–2010. The models

are listed in Table 1, along with some of their basic

characteristics and references. (The monthly hindcast

data for these models are available at http://iridl.ldeo.

columbia.edu/SOURCES/.Models/.NMME.) The eight

models include one from the Center for Ocean–Land–

Atmosphere Studies (COLA) and the University of

TABLE 1. Basic information for the eight models of the NMME used in the study. The acronym FLOR stands for Forecast-oriented Low

Ocean Resolution.

Model Expanded model name

No. ensemble

members

Max lead

(months) Reference

1) CMC1-CanCM3 Canadian coupled model 1 10 12 Merryfield et al. (2013)

2) CMC2-CanCM4 Canadian coupled model 2 10 12 Merryfield et al. (2013)

3) COLA-RSMAS-CCSM4 COLA/University of

Miami/NCAR coupled model

10 12 Gent et al. (2011) and Infanti

and Kirtman (2016)

4) GFDL-CM2pl-aer04 Modified version of GFDL

coupled model

10 12 Delworth et al. (2006) and

Zhang et al. (2007)

5) GFDL-CM2p5-FLOR-A06 Expanded version of GFDL

coupled model, FLOR-A06

12 12 Vecchi et al. (2014)

6) GFDL-CM2p5-FLOR-B01 Expanded version of GFDL

coupled model, FLOR-B01

12 12 Vecchi et al. (2014)

7) NASA-GMAO-062012 Modified version of NASA

coupled model

12 9 Vernieres et al. (2012)

8) NCEP-CFSv2 NOAA/NCEP coupled model 24 10 Saha et al. (2014)
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Miami, one from the National Aeronautics and Space

Administration (NASA), three from the Geophysical

Fluid Dynamics Laboratory (GFDL), two from the

Canadian Meteorological Centre (CMC), and one from

NOAA’s NCEP. The global hindcast data are on a

1-degree grid. The eight models used provide varying

numbers of ensemble members, ranging from 10 to 24.

Here, the ensemble mean is used to represent the

forecast signal, while the ensemble member spread,

representing the forecast uncertainty and making

possible probability forecasts, is not considered.

The verifying observations, also in a 1-degree grid

and available on the above-cited web page, are CMAP-

UnifiedRaingaugeDataset (URD) for precipitation (Xie

and Arkin 1997) and GHCN Climate Anomaly Moni-

toring System (GHCN-CAMS) (Fan and Van den Dool

2008) for temperature, respectively, both created at the

NOAA Climate Prediction Center. We also test an

alternative observed dataset for temperature, the

CAMS (Ropelewski et al. 1984; available at http://

iridl.ldeo.columbia.edu/SOURCES/.NOAA/.

NCEP/.CPC/.CAMS/.anomaly/.temp/). Most of the

attention in this study is devoted to precipitation

prediction.

b. CCA

CCA has been used in two general ways in climate

prediction (Fig. 1, top). In the first version, CCA is a

purely statistical forecast model in itself, relating

anomaly patterns in recent observations (e.g., sea

surface temperature anomalies) to climate anomaly

patterns in a subsequent season (e.g., precipitation

anomalies) based on an extended hindcast period. The

relationships are then used to make real-time forecasts.

In this case no dynamical model is involved. Examples

are seen in Barnett and Preisendorfer (1987), Barnston

(1994), and Johansson et al. (1998), among others. The

second version, used in this study, relates the raw out-

puts of dynamical model predictions to their corre-

sponding observations for the targeted forecast time

based on a hindcast period. Often the model output is

for the same time and same field as the observations

(e.g., both for precipitation), unless a different model

predictor field is found to perform better (e.g., pre-

dicted geopotential height against observed pre-

cipitation). Also, the predictor domain is usually

designed to be larger than the targeted domain, so that

relevant features outside of the targeted domain can

be used for better model error correction. In this

second CCA usage, the CCA serves as a dynamical

model postprocessor, correcting the model’s system-

atic errors—a technique sometimes called model

output statistics (MOS).

In the CCA method used here, preorthogonalization,

using empirical orthogonal function (EOF) analysis, is

done separately on the model hindcasts (the X variable,

or predictor) and on the corresponding observations

(the Y variable, or predictand), and a truncated set of

the principal component time series from these EOFs

is used as input to the CCA (Fig. 1, bottom). Pre-

orthogonalization reduces the number of variables used

by the CCA, reducing the potential for overfitting

(Barnett and Preisendorfer 1987) while preserving the

most coherent patterns of variability. In terms of cross-

validated skill, using CCA with preorthogonalization

has been found to be competitive with other available

methods that identify coupled patterns (Bretherton

et al. 1992). The EOF analysis can be done using cor-

relations or covariances among the gridded values, and

experiments are conducted to determine which choice

leads to more effective model corrections. On average,

covariance results in better CCA corrections for pre-

cipitation forecasts in our study, while correlation tends

to be preferred for temperature forecasts. A likely rea-

son for this outcome is discussed in section 4.

Within the CCA itself, a correlation matrix is first com-

puted between the principal component time series of

each predictor (predictand) and those of all pre-

dictands (predictors). Note that only cross-dataset

pairings are used; no predictor–predictor or predictand–

predictand correlation coefficients are used. This is

generally not a square matrix, but becomes square and

symmetric when post- or premultiplied by its transpose,

and each operation is carried out for the predictor and

predictand CCA solutions, respectively. The predictor

FIG. 1. Schematics showing (top) two common uses of CCA in

atmospheric sciences, where the second one is used in this study

and (bottom) reduction of the number of original variables (span-

ning up to thousands of grid points) for the predictors X and pre-

dictands Y to just their several leading independent principal

components, using EOF analysis, prior to applying CCA.
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and predictand product matrices are then used to ob-

tain CCA eigenvalues and eigenvectors for predictors

and predictands. The CCA modes consist of linear

combinations of the predictor and predictand input

principal components, which can be expanded back to

geographical space through the ‘‘outer’’ EOFs used to

preorthogonalize the initially larger datasets. Two

CCA time series are also produced for predictor and

predictand for each mode, and their correlation is

called the canonical correlation coefficient. Hence,

each mode shows a coupling of a predictor and pre-

dictand pattern, and the time series shows the strength

and polarity with which each year showed the given

pattern in the forecasts and observations. More

detailed and complete mathematical descriptions of

CCA are available in the appendix of Barnett and

Preisendorfer (1987) and in Bretherton et al. (1992)

and Tippett et al. (2008).

The CCA is applied to 15 different regions of the

globe (Fig. 2), with the idea that each region is better

treated with individual attention regarding the large-

scale climate patterns pertinent to it but not neces-

sarily to other regions of the globe. An attempt is made

to define regions that capture coherent responses to

known leading modes of variability, such as ENSO.

Hence, eastern tropical Africa (E Trop Afr), southern

Africa (S Afr), and southern North America (S North

Amer) are used (Fig. 2). The regions overlap some-

what so that discontinuities in the forecasts near the

boundaries may be smoothed using weighted averag-

ing, where the weights are inversely related to the

distance to the regions’ nearest borders. The corrected

forecasts of each region are then merged to form a

global forecast. The globe as a single region is also used

as a 16th ‘‘region,’’ allowing for a skill comparison

between the merged regional forecasts and the single

globe forecast.

c. Cross validation

A cross-validation scheme is used in which three

consecutive years are withheld from both the pre-EOF

and the CCA training sample, and themiddle year of the

three is predicted. The years withheld progress from the

earliest three to the latest three. The first and last years

are also predicted so that each year has a cross-validated

forecast. Three years, rather than just one, are withheld

tominimize a negative skill bias that appears when there

is a low correlation between forecasts and observations

(Barnston and Van den Dool 1993). Also, withholding

more than one year reduces a positive skill bias when

there is substantial year-to-year autocorrelation of anom-

alies, as there are two available adjacent years in the

hindcast tests when only one year is withheld but only one

adjacent year (the previous year) in real-time forecasting.

Inmany seasonal climate forecast settings, the negative bias

has been shown to outweigh the positive one when the

underlying skill level is modest.

The number of EOF modes used varies by region to ap-

proximately maximize skill, determined by cross-validated

skill sensitivity tests that vary the numbers of modes for X,

forY, and for theCCA.Testing shows that for forecasts for a

given region, season, and lead time, making the truncations

model-specific adds little to resulting skill (less than 0.01 in

anomaly correlation), and that within a range of truncation

settings, corrected forecast skills for a given model are fairly

insensitive to the setting. For example, when using an ap-

proximately optimum five EOF modes for X, six EOF

modes for Y, and five CCA modes for a given model,

FIG. 2. The 15 slightly overlapping CCA target areas, each of which uses a larger

predictor area.
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truncations ranging from one less of each to two more for

each result in little change in cross-validated skill.

d. Verification measures

The temporal anomaly correlation is used as the pri-

mary verificationmeasure, and the average performance

over a region is computed using the area-weighted

average of the Fisher-transformed correlations.1 The

root-mean-square error skill score (RMSESS) is also

computed to detect the presence of all types of calibration

errors collectively—both forecast biases of the mean and

the amplitude at the local level, as well as biases in the

placement and amplitude of large-scale patterns.2 The

RMSESS is defined as

RMSESS5 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

fct

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

clim

p , (1)

where MSEfct is the MSE of the model forecasts and

MSEclim is the MSE of climatology forecasts (always

forecasting the climatological mean). The RMSESS is a

variation of the MSESS (Murphy and Epstein 1989),

which does not take the square roots of the MSE terms

in Eq. (1). When MSEfct is equal in size to MSEclim,

RMSESS (andMSESS) is zero, and whenMSEfct is zero

(i.e., all perfect forecasts), RMSESS (and MSESS) is 1.

Note that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEclim

p
equals the interannual standard

deviation of the observations for a given season and

location. The MSEfct used in the RMSESS is based on

standardized anomalies with respect to the observed

mean and standard deviation.

e. Statistical significance

The statistical significance of improvements to the

anomaly correlation is assessed using the Fisher Z

transform (Hays 1973). For regional average correla-

tions, an estimate of the number of spatial degrees of

freedom in the region is made using the methods de-

scribed in Van den Dool and Chervin (1986) andMoron

et al. (2007). The degrees of freedom used in the Fisher

Z test are then the product of the temporal degrees of

freedom (based on 29 years of data) and the estimated

spatial degrees of freedom. The Fisher test assumes in-

dependent samples from which the difference between

the two correlations is compared; however, in our case

the two samples are not independent because both

share the same observation dataset. To account for this

dependency, the method described in DelSole and

Tippett (2014) is used [see their Eqs. (11) and (12)],

which removes the effect of the sample dependency by

adjusting (usually decreasing) the standard error of the

difference between the two transformed correlations

based on the two correlation skills in conjunction with

the correlation between the uncorrected and the cor-

rected forecasts. Note that the approach to assessing the

statistical significance for an entire region just described

is an analytic alternative to theMonte Carlo approach to

field significance put forth in Livezey and Chen (1983).

Another aspect of statistical significance applies tomaps

showing the spatial distribution of changes in the corre-

lation skill due to the CCA correction. We want to know

at which locations positive changes are statistically sig-

nificant. While significance of improvements at individual

grid points is assessed using the Fisher Z test described

above, we also need to account for the multiplicity of

significance tests being conducted across the entire map—

for example, we expect about 5%of the locations to attain

significance at the 0.05 level due purely to chance. This

multiplicity issue is addressed here using the approach of

the ‘‘false discovery rate’’ (i.e., the rate of making a type I

statistical error), documented inBenjamini andHochberg

(1995) and applied to the atmospheric sciences in Wilks

(2006, 2016). In this approach, the significance p values for

all of the grid points are rank ordered from smallest to

largest. Then each respective p value is compared to the

quantity (0.05) (rank/total) where the smallest p value has

rank 1, next smallest rank 2, and so forth, and ‘‘total’’ is the

number of locations in the entire domain being evaluated.

The value 0.05 is the false discovery rate control, which

can be set to other values if desired. Only locations whose

p values are no larger than the largest one that is less than

0.05 (rank/total) are considered locally significant using

this approach. The number of points passing the test is

typically considerably smaller than the number originally

attaining 0.05 significance.

Significance tests for differences in RMSESS use the F

test for the ratio of two variances, those variances here

being the MSEfct [as used in Eq. (1)] of each of the two

sets of forecasts. As in the case of tests for changes in the

anomaly correlation, the temporal degrees of freedom is

multiplied by the estimated spatial degrees of freedom,

and the effect of nonindependent samples (since both

share the same observations) is addressed in accordance

with DelSole and Tippett (2014), where the required F

value to attain significance is decreased as a function of

the correlation between the errors of the uncorrected

and the corrected forecasts [see their Eq. (10)].

1 The Fisher Z equivalents to correlation coefficients (Hays

1973) can be linearly averaged, and the average then transformed

back to a correlation, while the correlations themselves should not

be linearly averaged.
2 Although pattern biases often encompass local biases, some

local biases may be specific to individual grid points or confined

to small areas and unable to survive the truncated pre-

orthogonalization and the CCA.
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All significance levels given here are for one-sided tests

because of the a priori expectation that the CCA im-

proves skill by accounting for systematic model errors.

3. Results

a. Seasonal precipitation

For CCA treatment of the precipitation forecasts,

the covariance matrix is found to result in higher

average skill improvement than the correlation ma-

trix when used in the EOF analyses preceding the

CCA. Therefore, it is used for all of the precipitation

corrections.

Figure 3 shows, for the southern North America re-

gion (including the United States) for each of the eight

models, the original area-averaged anomaly correlation

skill and the change in skill due to the CCA for pre-

cipitation forecasts for the January–March and July–

September target seasons. Skill for each of the target

seasons is shown when predicted at lead times of

1.5 months (e.g., a January–March forecast made in

early December) and 3.5 months (made in early Octo-

ber). Original model skill is approximately 0.15 to 0.20

FIG. 3. (left) Original anomaly correlation skill (3100) and (right) the change in skill due to the CCA for the

southern North America region for each of the eight NMME models for precipitation. The results (from top to

bottom) are for (row 1) January–March precipitation forecasts from early December, (row 2) January–March

forecasts from early October, (row 3) July–September forecasts from early June, and (row 4) July–September

forecasts from early April. The order of the eight models (horizontal axis) is 1) CCSM4, 2) NASA, 3) GFDL,

4) GFDL-FLOR-A, 5) GFDL-FLOR-B, 6) CMC1, 7) CMC2, and 8) CFSv2.

8340 JOURNAL OF CL IMATE VOLUME 30

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/12/21 08:13 PM UTC



for January–March, with little drop in skill between

early December and early October starts. Skill is less

than 0.10 for most July–September forecasts. For the

January–March forecasts from early December, the

CCA corrections increase skill for the CCSM4, GFDL-

FLOR-A, and CMC1 models, but result in little change

or a decrease in skill for the other models. The correc-

tions have similar effects on the longer lead forecasts for

January–March, whereas for July–September forecasts

the results of the corrections are mainly unfavorable.

Overall, with the exception of a few cases, the CCA

corrections do not result in substantial winter or summer

skill improvements for precipitation forecasts in the

southern North America region.

Although Fig. 3 does not show general improvement

in skill, some of the models do show a skill increase for

January–March forecasts made in early December (up-

per right panel). The skill of the GFDL-FLOR-A model

(model 4) is improved by about 0.05. To further detail this

result, Fig. 4 shows the spatial distribution of the anomaly

correlation skill before and after the CCA correction and

the skill change due to theCCA. Skill is improved in some

FIG. 4. Geographic distribution of temporal anomaly correlation skill over the southern

North America region for precipitation forecasts by the GFDL-FLOR-A model for January–

Marchmade in early December. (top) The skill after the CCA correction, (middle) the original

skill, and (bottom) the skill improvement due to the CCA [note the different scale for

(bottom)].
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portions of the United States (the Midwest, northern

Plains, and Pacific Northwest) but degraded in other

portions of the domain. Using the Fisher Z transform to

assess the statistical significance of the positive skill

changes at each grid point, 20% of the points have sig-

nificant positive changes at the 0.05 level and 12% at the

0.01 level. However, only 9% are significant using the

false discovery rate approach, using 0.05 as the false dis-

covery rate control level. This wouldmean that only small

portions of the darkest red locations on the bottom panel

of Fig. 4 are locally significant.3 To evaluate the 0.05

domain-average skill improvement (from 0.14 to 0.19),

we estimate 5 spatial degrees of freedom for precipitation

for this region during winter and use the dependent-

sample version of the Fisher Z test, and find that the

improvement in correlation is not statistically significant

at the 0.10 level. This result implies that none of the

domain-average improvements shown in the panels on

the right side of Fig. 3 are statistically significant and that

the variation of CCA-related changes among the models

due to the CCA could be largely due to sampling varia-

tions rather than physically based differences in the

models’ responses to the linear pattern corrections. It

should also be kept in mind, however, that with only

29 years of data, the power of statistical tests for the

difference between two correlation skills is modest,

and large differences are required to achieve sta-

tistical significance. In other words, part of the

differences that fail the statistical significance test

may still be real but are embedded in too much

sampling variability for that variability to be con-

sidered sufficiently unlikely to have caused the

result.

Despite this statistically negative result, a feature

worth noting is that models having relatively higher

uncorrected skill tend to be helped less by the CCA than

models having lower starting skill. Thismight be the case

if there is an upper limit of skill that is approximately the

same from one model to another and if models far-

ther from that level are more able to benefit from the

CCA than those closer to it.

When averaged over the eight models, the change

in skill from the CCA correction in southern North

America for forecasts of January–March made in

early December is 0.01. Table 2 shows the model-

average skill changes for January–March forecasts

for this short lead time for each of the 15 regions

and indicates that southern North America is one of

6 regions out of 15 to have a positive net skill

change, the highest of which occurred in north-

western Asia. However, none of the six regions’ av-

erage skill improvements are statistically significant at the

0.10 level. Table 2 also shows the number of EOF modes

retained in the preorthogonalization of X and Y and the

percentages of original variance preserved in the process.

TABLE 2. Uncorrected anomaly correlation skill and the change in skill due to the CCA for precipitation forecasts for January–March

made in early December, averaged over eight models, for each of 15 individual regions and for the globe as a single region. The first

column shows the number of modes retained for the X EOFs, Y EOFs, and the CCA, followed by the model-average percentage of

variance preserved after the EOFs of X and Y. The area-weighted average change in skill of the 15 individual regions is 20.02.

Region

No. modes X, Y,

CCA; %Var X, Y

Initial

skill

CCA: Skill

change Region

No. modes X, Y, CCA;

%Var X, Y Initial skill

CCA: Skill

change

N North America 6, 7, 6 0.05 0.03 South Africa 5, 5, 5 0.10 0.04

79, 53 60, 53

S North America 6, 7, 6 0.18 0.01 NW Asia 6, 7, 6 0.10 0.06

84, 62 85, 74

South America 6, 7, 5 0.15 20.04 SW Asia 6, 7, 6 0.13 20.06

79, 50 75, 63

Greenland 5, 5, 4 0.06 0.05 NE Asia 6, 7, 6 0.09 20.01

69, 76 69, 58

Europe 6, 7, 6 0.07 20.05 SE Asia 6, 7, 6 0.12 20.06

67, 60 78, 62

North Africa 5, 6, 5 0.07 20.04 Indonesia 5, 4, 3 0.24 0.01

61, 54 76, 67

W Trop Africa 6, 7, 6 0.01 20.01 Australia 5, 6, 4 0.24 20.14

65, 63 80, 67

E Trop Africa 5, 5, 5 0.05 20.16 Single Globe 16, 18, 16 0.114 0.000

68, 65 84, 80

3 Strictly speaking, the significant points would not be points

simply exceeding a correlation improvement threshold because the

original and corrected correlations themselves also matter (e.g., a

change from 0.3 to 0.6 is more significant than a change from 0.0 to

0.3).
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The EOFs capture roughly two-thirds of the variance for

most of the regions and generally retain more variance in

the model predictions X than in the observations Y de-

spite the larger areas covered in the former.

The CCA can also statistically calibrate the forecasts

for the entire globe as a single region, rather than

merging the corrected forecasts of the individual re-

gions. One might expect the merged skill result to be

better than the single globe result due to the individu-

alized focus provided to each region when treated sep-

arately. However, this expectation is not confirmed.

As shown in Table 2, the area-weighted average of the

CCA-related skill change over the individual regions

(20.02) is slightly lower than the skill of the globe as

a single region, which is near zero. The percentage of

variance retained in the preorthogonalization EOFs

for the single globe analysis is somewhat larger than

that retained in most of the individual regions, even

though cross-validated skill was optimized in each

case. More will be said about this outcome in the final

section.

Skill comparisons for other seasons and lead times

generally give similar results to those for the short-lead

precipitation forecasts for January–March, in that sub-

stantial skill improvements due to the CCA are in a

minority, and the CCA for the single globe produces

slightly better results than the individually tailored

CCAs for each region andmerged into a global forecast.

A summary of these precipitation results is shown in

Table 3 for the target seasons of January–March and

July–September, each at 1.5- and 3.5-month lead times.

Exceptions to the unimpressive results shown above

are found in a few specific regions and seasons. Pre-

dictions for the October–December season made in

early September are more favorable in the case of

Indonesia (Fig. 5) and to a lesser degree in eastern

equatorial Africa (Fig. 6). In both of these regions—

particularly Indonesia—the precipitation during October–

December is significantly related to the ENSO state.

Indonesia is in the western portion of the ENSO phe-

nomenon itself (Walker and Bliss 1934; Bjerknes 1969),

while eastern equatorial Africa has an ENSO telecon-

nection mediated by the SST anomaly in the western

Indian Ocean (Goddard and Graham 1999). In these

clear cases of inherent seasonal climate predictability,

the historical rainfall observations add value to the

models’ already relatively skillful predictions. Statistical

assessment shows that the skill change for the CFSv2

model in the Indonesia case and the CMC2 and NASA

models in the east tropical Africa case are significant at

the 0.10 level, while the other models fall short of this

significance level.

Figure 7 shows the original individual model correla-

tion skills and the change in skill due to the CCA for

the globe as a single region, for forecasts of precipitation

for January–March and for July–September, each made

early in the preceding month as well as two months

earlier. Forecasts for January–March from both De-

cember and October start times begin with a global

average skill mostly near 0.1. After applying CCA, skills

change slightly, becoming either lower or higher than

their starting level. These skill changes are not statisti-

cally significant. Nonetheless, some features of the skills

are noteworthy. Models showing a lower starting skill

more frequently have a positive change from the CCA

than those with a higher starting skill. The shorter lead

forecasts for January–March show little average skill

change with the CCA, while six out of eight models

have a small positive skill change in the longer lead

forecasts, with the CMC1-CanCM3 model skill being

helped the most. Forecasts of July–September start with

lower original skills than found for January–March, av-

eraging just under 0.1 for early June starts and slightly

more than 0.05 for early April starts. For early June

starts there is little average skill change with the CCA,

while for early April starts, seven out of eight models

show slight improvements, with the CMC2-CanCM4

benefiting the most from the CCA. Estimating 23 spatial

degrees of freedom for global precipitation in January–

March, only the two cases of correlation skill improve-

ment of 0.05 or greater in Fig. 7 are statistically significant

at the 0.10 level; interestingly, both of these appear for the

longer-lead forecasts.

The geographical distribution of correlation skill be-

fore and after the CCA, as well as the CCA-related skill

change, for precipitation forecasts for January–March

made in early December by the CMC1-CanCM3 model

is shown in Fig. 8 for the globe treated as a single region.

Global average skill is 0.09 and 0.12 before and after the

TABLE 3. Comparison of the effect on globally averaged

anomaly correlation skill of the CCA when performed on indi-

vidual regions and merged to a global precipitation forecast and

when performed on the globe as a single region. Results are av-

eraged over all eight models and are shown for forecasts for

January–March made in early December and early October and

forecasts for July–September made in early June and early April.

Precipitation

start / target

Original

model skill Style

Change from

CCA

Dec / JFM 0.114 Merge 20.023

Single globe 0.000

Oct / JFM 0.084 Merge 20.008

Single globe 0.017

Jun / JAS 0.086 Merge 20.013

Single globe 0.009

Apr / JAS 0.065 Merge 20.007

Single globe 0.017
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CCA, respectively. Improvements are seen in parts of

tropical Africa, extratropical Asia, and North America.

However, pockets of skill degradation appear in Aus-

tralia, eastern equatorial Africa, and other smaller areas

throughout the globe. These locations of skill change are

likely partly real and partly due to sampling variability.

The global average skill increase of 0.03 is not statisti-

cally significant.

FIG. 5. (top),(left) Original anomaly correlation skill (3100) and (right) the change in skill

due to the CCA for the Indonesia region for each of the eight NMMEmodels. Results are for

October–December precipitation forecasts from early September. (bottom) The location of

the Indonesia forecast target region (land only) and its larger predictor region spanning the

global tropics.

FIG. 6. (top)As in Fig. 5, but for the east tropical Africa region. (bottom) The location of the

east tropicalAfrica forecast target region (land only) and its larger embedding predictor region.
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As an additional verification measure, the RMSESS

between the precipitation forecasts and the corre-

sponding observations is computed before and after the

CCA correction. Figure 9 shows RMSESS of un-

corrected and CCA-corrected forecasts of the globe

treated as a single region, for the January–March season

made from early October. In contrast to the anomaly

correlation, the CCA substantially improves the RMSESS

over most of the globe. Table 4 shows RMSESS for

uncorrected and corrected forecasts for January–March

and July–September, each at 1.5- and 3.5-month lead

times. In all cases, considerable improvements in

RMSESS are noted. The statistical significance of the

difference between uncorrected and corrected RMSESS

is tested using the F ratio of the uncorrected to the

corrected MSEfct variance terms in Eq. (1). Most of the

individual grid points are significant at p , 0.01 for

the four season/lead time combinations shown in Table

4, and field significance for the entiremap is still stronger

owing to the additional spatial degrees of freedom.

However, the average RMSESS of the corrected fore-

casts still falls just short of zero, meaning that it is still

slightly larger than that of perpetual climatology fore-

casts, despite the positive global average correlation

skills of the forecasts seen earlier in both the uncor-

rected and CCA-corrected forecasts.

The large improvement in RMSESS suggests the

presence of systematic forecast errors in the uncorrected

forecasts that do not necessarily involve spatial pattern

placement. Such errors include mean biases and ampli-

tude biases that are local, or of small spatial scale,

and are generally not associated with the locational

aspects of large-scale anomaly patterns. Correction of

large-scale patterns would result in improved anomaly

correlations as well as RMSESS. On the other hand,

correction of purely local biases in forecast mean or

FIG. 7. (left) Original anomaly correlation skill (3100) and (right) the change in skill due to the CCA for the

globe treated as a single region for each of the eight NMME models for precipitation. The results (from top to

bottom) are for (row 1) January–March forecasts from early December, (row 2) January–March forecasts from

early October, (row 3) July–September forecasts from early June, and (row 4) July–September forecasts from early

April. The order of the eight models (horizontal axis) is 1) CCSM4, 2) NASA, 3) GFDL, 4) GFDL-FLOR-A,

5) GFDL-FLOR-B, 6) CMC1, 7) CMC2, and 8) CFSv2.
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amplitude would improve RMSESS, as the corrected

forecasts would have smaller errors with respect to the

observations, but the anomaly correlation would not be

changed because the temporal phasing of the forecasts

and observations would be preserved. As the CCA is

capable of improving both types of calibration problems

with the appropriate truncations of the EOF and CCA

modes, it appears that spatial pattern placement errors

are only prominent in the case of some of the models for

some seasons and regions, as shown by those instances

in which CCA materially improves the correlation as

well as RMSESS. Inspection of the NMME forecast

data reveals numerous examples of substantial differ-

ences between forecast and observed means as well as

FIG. 8. As in Fig. 4, but for the globe as a single region, for precipitation forecasts by the

CMC1-CanCM3 model.
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standard deviations (not shown). These appear coherent

within small distances but otherwise vary in direction

and size and are sometimes related to land–ocean in-

terface or major terrain features.

If systematic errors in the positions of the large-scale

anomaly patterns do not play a major role in the sys-

tematic errors of theNMMEmodels, methods that focus

on individual locations one at a time, such as multiple

regression or principal component regression, may be

adequate and simpler approaches, though requiring

probabilistic reliability introduces challenges (Tippett

et al. 2014). Here, the CCA has functioned to reduce

systematic errors both locally and at the pattern level in

the precipitation forecasts, but it might be compromised

in handling the local biases compared with regression

methods that do not filter the predictand data using the

truncated sets of EOF and CCA modes.

b. Seasonal temperature

In contrast to precipitation, for temperature the cor-

relation matrix is found to result in higher average skill

improvement than the covariance matrix when used in

the EOF prefiltering preceding the CCA. Therefore, the

correlation matrix is used for all of the temperature

corrections. When the CCA corrections are applied to

seasonal temperature forecasts, a result approximately

FIG. 9. Geographic distribution of root mean squared error skill score (RMSESS) over the

globe as a single region, for precipitation forecasts by the CMC1-CanCM3 model for January–

March made in early October. The top panel shows the original skill, and the bottom panel the

skill following the CCA correction. The RMSESS is in terms of standardized anomalies with

respect to the observed mean and standard deviation.
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similar to that of precipitation is found, but slightly less

favorable. Prior to the CCA correction, forecasts for

temperature usually have higher correlation skills than

precipitation. However, as found for precipitation fore-

casts, the CCA only improves upon those skills in specific

regions and seasons but in fewer cases than found for

precipitation.

Table 5 summarizes the initial skill and the CCA-

related skill change for the temperature forecasts of the

15 regions and of the globe as a single region, for fore-

casts of January–March made in early December. Most

regions’ skills are not improved by the CCA, and the

average over all regions is negative. Also, in contrast

with the result for precipitation, the CCA for the globe

as a single region is not more favorable than the result for

the 15 regions merged to form global forecasts. Table 5

shows the number of EOF modes retained in the pre-

orthogonalization of X and Y and the percentages of

original variance preserved in the process. The EOFs

capture more than 80% of the variance for most of the

regions, which exceeds that for precipitation (Table 2)

even with fewer modes retained than for precipitation, as

temperature has more spatial coherence (less noise) in its

variability than precipitation.

While results averaged over all models are not fa-

vorable for most regions or for the globe as a single

region, some models’ temperature forecasts benefit

from the CCA correction. For example, Fig. 10 shows

the spatial distribution over the globe of correlation

skill before and after the correction, along with the

change due to the CCA, for forecasts of January–March

made in early December by the GFDL-CM2p1 model.

The initial model skill is good over parts of most conti-

nents and is improvedmost notably over eastern Europe/

westernAsia and in other regions. Skill is degraded by the

CCA over Australia, northern Mexico, and some other

regions. Global average correlation skill is increased

from 0.28 to 0.32. However, estimating 15 spatial de-

grees of freedom for January–March temperature, the

average correlation boost of 0.04 falls slightly short of

statistically significance at the 0.10 level, even though

35% of the grid points are significant at the 0.05 level,

25% at the 0.01 level, and 27% are significant using the

false discovery rate approach, using 0.05 as the false

discovery rate control level. The significance of the

average improvement is clearly hampered by re-

gions having very strong degradations (e.g., Aus-

tralia) even though only 40% of grid points had skill

decreases.

A summary of results is shown in Table 6 for the

target seasons of January–March and July–September,

each at 1.5- and 3.5-month lead times. In forecasts for

TABLE 4. Global average RMSESS for precipitation before and

after the CCA correction. Results are shown for forecasts for

January–March made in early December and early October, and

forecasts for July–September made in early June and early April.

Precipitation

Start / Target

Global Avg RMSESS

Before CCA

Global Avg RMSESS

After CCA

Dec / JFM 21.31 20.04

Oct / JFM 21.32 20.04

Jun / JAS 21.17 20.05

Apr / JAS 21.15 20.05

TABLE 5. Uncorrected anomaly correlation skill, and the change in skill due to the CCA, for temperature forecasts for January–March

made in early December, averaged over 8 models, for each of 15 individual regions and for the globe as a single region. The first column

shows the number of modes retained for the X EOFs, Y EOFs, and the CCA, followed by the model-average percentage of variance

preserved after the EOFs of X and Y. The area-weighted average change in skill of the 15 individual regions is 20.07.

Region

No. modes: X, Y,

CCA; %VarX, Y

Initial

skill

CCA: Skill

change Region

No. modes: X, Y,

CCA; %VarX, Y

Initial

skill

CCA: Skill

change

N North America 5, 5, 3 0.25 20.14 SouthAfrica 5, 5, 3 0.40 20.03

85, 92 89, 84

S North America 5, 5, 3 0.27 20.12 NW Asia 5, 5, 3 0.14 20.23

86, 83 88, 94

South America 5, 5, 3 0.37 20.04 SW Asia 5, 5, 3 0.30 20.01

86, 76 89, 83

Greenland 5, 5, 3 0.43 0.00 NE Asia 5, 5, 3 0.14 20.10

86, 95 80, 85

Europe 5, 5, 3 0.18 20.14 SE Asia 5, 5, 3 0.30 20.07

85, 91 83, 87

North Africa 5, 5, 3 0.35 20.03 Indonesia 5, 5, 3 0.40 0.01

86, 89 95, 87

W Trop Africa 5, 5, 3 0.42 0.00 Australia 5, 5, 3 0.20 20.05

87, 88 84, 85

E Trop Africa 5, 5, 3 0.38 20.05 Single globe 8, 10, 8 0.27 20.071

93, 90 87, 83
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January–March, the single global CCA does not perform

better than the individual regional CCAs merged into

global forecasts as it does for precipitation. In forecasts of

January–March from early October, skills begin slightly

lower than those of forecasts starting from early De-

cember, and the CCA correction does not result in skill

improvements when averaged over all models and re-

gions. Nontrivial skill improvements due to the CCA are

only occasional. On the other hand, the skill of forecasts

for July–September, which are degraded relatively less by

the CCA than those for January–March, shows the single

global CCA forecasts outperforming themerged regional

CCAs, with skill change near or just above zero.

When RMSESS is used as the verification measure, the

CCA strongly improves the skill of the uncorrected tem-

perature forecasts. Figure 11 shows the spatial distribution

FIG. 10. As in Fig. 8, but for temperature forecasts by the GFDL-CM2p1 model for

July–September made in early June.
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of RMSESS of uncorrected and CCA-corrected temper-

ature forecasts of the globewhen treated as a single region,

for the January–March season made from early Decem-

ber. Table 7 shows RMSESS for uncorrected and cor-

rected forecasts for January–March and July–September,

each at 1.5- and 3.5-month lead times. In all cases, large

improvements in RMSESS are noted. Testing the statis-

tical significance of the difference between uncorrected

and corrected RMSESS, using the F ratio of the uncor-

rected to the corrected MSEfct variance terms in Eq. (1),

nearly all of the individual grid points are significant at

p, 0.01, and many at p, 0.001, for the four cases shown

in Table 7, and field significance for the entire map is even

stronger given the multiple spatial degrees of freedom.

However, the RMSESS of the corrected forecasts is only

slightly positive in all four cases, varying from 0.05 for the

longer lead to 0.06 or 0.07 for the shorter lead, showing that

the MSE of the corrected forecasts is only slightly smaller

than that produced by perpetual climatology forecasts.

The statistical significance of the global average differ-

ence fromzeroof the global average correctedRMSESS for

temperature is tested, again using theF test, this time on the

variance ratio of the correctedMSEfct toMSEclim. Based on

approaches used in Van den Dool and Chervin (1986) and

Moron et al. (2007), the spatial degrees of freedom for

global temperature are estimated at 15 for January–March

and 20 for July–September. The correlation of uncorrected

and corrected forecast errors is also computed, representing

the lack of independence of the uncorrected and corrected

samples because both share the same observations. This

second factor works to increase significance when properly

accounted for, as shown inDelSole and Tippett (2014). The

RMSESS of 0.07 and 0.06 for January–March and July–

September, respectively, are found to be significant at the

0.10 level, while the RMSESS of 0.5 for the longer-lead

forecasts for the two seasons does not achieve 0.10 level

significance. While the short-lead RMSESS significances

are weak, they suggest that the positive skill averages for

temperature after the CCA correction are unlikely to be

positive due only to sampling variability.

Contrasting the RMSESS improvement in temper-

ature forecasts with that noted for precipitation (Fig. 9;

Table 4), RMSESS for uncorrected temperature

forecasts averages lower than that for precipitation

and after correction attains higher levels than for

precipitation. The higher final skill might be expected

in view of the greater inherent predictability of tem-

perature than precipitation, partly due to its more

coherent, less spatially noisy character. Temperature

also has the benefit of the largely predictable upward

trend due to greenhouse gas increases. Part of the

reason for the lower RMSESS for uncorrected tem-

perature than uncorrected precipitation forecasts may

be related to the nature of theGHCN-CAMS observed

temperature data. Because there is a problem of

missing temperature data in much of the developing

world (e.g., parts of South America and Africa),4 the

gridding of the GHCN-CAMS data sometimes re-

quires interpolation or extrapolations over long dis-

tances. In proportion to the uncertainty in these ‘‘filled

in’’ grid squares, the interannual variability may be-

come unrealistically small. In fact, in a few grid squares

the interannual standard deviation is found to be zero,

and Eq. (1) is not usable. At grid squares having var-

iability smaller than that likely to actually prevail,

model biases may be amplified when expressed using

Eq. (1), because the RMSE of the perpetual climatol-

ogy forecasts is unrealistically small when the vari-

ability of the observations is low, and the model forecasts

are standardized using the standard deviation of the

observations.

Considering the nature of handling of missing tem-

perature data in the GHCN-CAMS dataset, we used an

alternative temperature dataset to assess skill sensi-

tivity, despite that the anomaly correlation is not di-

rectly affected by the interannual variability of the

observations.5 The temperature experiments were re-

peated using the Climate Prediction Center’s CAMS

temperature anomaly data (Ropelewski et al. 1984)

instead of the GHCN-CAMS temperature data. The

TABLE 6. Comparison of the effect on globally averaged

anomaly correlation skill of the CCA when performed on indi-

vidual regions and merged to a global temperature forecast and

when performed on the globe as a single region. Results are av-

eraged over all eight models and are shown for forecasts for

January–March made in early December and early October and

forecasts for July–September made in early June and early April.

Temperature

start / target

Original

model skill CCA style

Change from

CCA

Dec / JFM 0.273 Merge 20.070

Single globe 20.071

Oct / JFM 0.233 Merge 20.045

Single globe 20.081

Jun / JAS 0.311 Merge 20.030

Single globe 0.011

Apr / JAS 0.264 Merge 20.024

Single globe 0.000

4 For precipitation, missing data are less prevalent because of the

use of satellite data since 1979 and because in some developing

countries in the tropics, precipitation data are archived for agri-

cultural purposes, while temperature data are not archived.
5 The correlation may be affected by interpolated data because

temperatures estimated at such locations likely deviate from the

unknown reality in aspects besides their interannual standard

deviation.
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CAMS anomaly data are on a 28 3 28 grid but were

regridded to the 18 3 18 grid for the analyses. Sub-

stantial portions of Africa and South America are

missing in CAMS, while interpolated or extrapolated

in GHCN-CAMS.

Model correlation skill before the CCA correction is

higher when using CAMS instead of GHCN-CAMS.

This may be due partly to the noise-filtering effect of

being based on 28 3 28 grid squares. It may also result

from the exclusion of areas of missing data, as opposed

to relying on the possibly unrealistic estimations used

in the GHCN-CAMS data. The CCA generally im-

proves the correlation skill approximately as much

when using CAMS as when using GHCN-CAMS,

therefore bringing the skills of most of the regions,

and the globe, to higher final skill levels than when

using GHCN-CAMS. For example, for the globe as a

single region, the initial correlation skill is 0.03 (0.06)

higher for CAMS than for GHCN-CAMS in the

1.5-month lead forecasts of January–March (July–

September) and higher by 0.05 (0.04) following the

CCA. These improved skills suggest that the practical

solution of filling in missing temperature data using

extrapolation/interpolation over large distances may

result in negative biases in globally averaged model

skill estimates.

FIG. 11. Geographic distribution of RMSESS over the globe as a single region, for tem-

perature forecasts by the NCEP-CFSv2 model for January–March made in early December.

(top) The original skill and (bottom) the skill following the CCA correction. The RMSESS is in

terms of standardized anomalies with respect to the observed mean and standard deviation.
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4. Conclusions and discussion

Using CCA, statistical postprocessing is applied to the

hindcasts of the individual models in the NMME, with a

focus on the correction of biases in the positions and am-

plitudes of the predicted large-scale anomaly patterns. The

conclusions to follow apply to each of the eight models

examined, as in no case do any models show substantial

departures from the findings despite differences in details.

The CCA-based corrections are not found to materi-

ally improve the anomaly correlation skills of precipi-

tation or temperature forecasts of the individual models

of the NMME in the case of most regions, seasons,

and lead times. Initial (uncorrected) forecast skills are

generally lower for precipitation than for temperature,

and improvements are somewhat more favorable for

precipitation than temperature. For precipitation, slight

improvements are noted for about half of the models

for most of the regions and for the globe, for the main

target seasons and lead times tested. Most of these skill

changes are not statistically significant. Positive out-

comes are noted more in cases of models with relatively

low uncorrected anomaly correlation, suggesting that

the lower skills of thesemodels may be due to systematic

pattern errors that are statistically correctable. The ef-

fect of the CCA is more substantially positive for short-

lead precipitation forecasts for October–December in

Indonesia and eastern tropical Africa, where the im-

provements in some of the models are statistically sig-

nificant. The rainfalls in both regions are governed

substantially by the ENSO state.

Although the temporal anomaly correlation generally

is not materially improved by the CCA, the RMSESS is

strongly and statistically significantly improved. This re-

sult suggests the presence of local biases in the forecasts,

such as mean bias and amplitude bias, which degrade

the RMSESS but not the anomaly correlation. Pattern

placement errors would be expected to degrade both

the correlation and the RMSESS. One would expect the

CCA to diminish both local systematic biases and spatial

placement errors together, even if treatment of both

types of errors might require retaining more pre-EOF

andCCAmodes than ifmainly just one type of errorwere

present. The EOF and CCA mode truncation sensitivity

tests allow selection of truncations resulting in approxi-

mately the best cross-validated correlation skills. There-

fore, it can be concluded that the CCA is treating both

local calibration biases and spatial placement and ampli-

tude errors and that the latter are either a smaller portion

of the total systematic error of the NMME models or

require a larger sample size to be better identified. Be-

cause of the EOF and CCA mode truncations, the CCA

correction is expected to decrease the amplitude of the

forecasts, especially given that the NMME forecasts are

found generally to have amplitudes higher than that

which would minimize squared errors (Barnston et al.

2017) and optimize probabilistic reliability (Van den

Dool et al. 2017). This damping tendency alone would

serve to weaken the extent of the negative RMSESS

results in the uncorrected forecasts. In the case of pre-

cipitation forecasts, the large improvement in RMSESS

with the CCA correction brings the average RMSESS

nearly up to zero, while for temperature a slightly pos-

itive (and weakly statistically significantly different from

zero) average RMSESS level is attained.

A possible explanation for the lack of skill improve-

ment with CCA-based pattern corrections is that the

NMME models are already doing a very good job

reproducing nature’s large-scale anomaly patterns and

their variability. To provide evidence for this possibility,

the EOF mode loading patterns for some of the pre-

dictions are examined for reasonably mutual comparabil-

ity. Figure 12 shows the first three modes of precipitation

forecasts from the CFSv2 model for January–March for

southern North America made in early December and

of the corresponding January–March observations. This

and other examples indicate that out of the approxi-

mately five or six modes retained for most of the regions,

only the leading one or sometimes two modes of the

model-predicted predictand clearly resemble the cor-

responding modes of the observed predictand.6 Thus,

the possibility that the models are already reproducing

reality quite well is not backed up by a strong corre-

spondence between the EOF modes of model forecasts

TABLE 7. Global average RMSESS for temperature before and

after the CCA correction. Results are shown for forecasts for

January–March made in early December and early October and

forecasts for July–September made in early June and early April.

Temperature

start / target

Global avg RMSESS

before CCA

Global avg RMSESS

after CCA

Dec / JFM 23.27 0.07

Oct / JFM 23.29 0.05

Jun / JAS 23.14 0.06

Apr / JAS 23.15 0.05

6 Caveats in such a comparison are 1) the observed domain is

smaller than the model-predicted domain, 2) the ensemble mean

model prediction is more noise-filtered than the single observation,

and 3) a poor-to-fair correspondence of modes may be considered

benign if one allows for linear combinations of higher-order modes of

the forecast set being comparable to linear combinationsof suchmodes

in the observed set (a situation that the CCA modes may reveal). A

consequence of this third point is that the model’s explained variance in

terms of the observational EOFsmay be high even if the corresponding

modes of model and observational EOFs do not look similar.
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and observations. It is then possible that the models

have room for improvement in representing nature’s

large-scale patterns but that the 29-yr record length

used here is insufficient to identify the models’ patterns

and their corresponding observed patterns robustly

enough to perform a beneficial statistical correction.

The limited sample issue was suspected to have caused

the inability to identify corresponding EOF and SVD

mode patterns in 500-hPa heights in model forecasts

and observations beyond very short lead times in

Rukhovets et al. (1998). The short record greatly lim-

ited the statistical significance of many of the results

shown here, even in the relatively favorable cases of

skill improvement.

While performing the corrections on 15 separate regions

and merging them into a global forecast was expected to

produce a more skillful corrected global forecast than

doing one correction on the globe as a single region, results

indicate that the opposite is most often the case for pre-

cipitation forecasts and that the two styles produce ap-

proximately equal skill results for temperature. It is

possible that some of the patterns in the forecasts and

observations are sufficiently global that restricting the

predictands to subregions prevents some noise filtering

that is possible with the global domain and that noise fil-

tering is more critical for precipitation than temperature

owing to the smaller signal-to-noise ratio in precipitation.

This global scale might help in pattern-based methods like

CCA, in contrast to statistical methods that treat one

predictand grid square at a time (e.g., multiple regression

or principal component regression) even if opting for

global predictors.

It is found that covariance-based EOFs lead to better

CCA-based skill improvements than correlation-based

EOFs for precipitation forecasts, while the opposite is the

case for temperature. One might expect the correlations

FIG. 12. (left) Spatial patterns for the first three pre-EOFs of the CFSv2 model precipitation forecasts for

January–March made in early December for southern North America and (right) the corresponding three pre-

EOFs of the observations of the January–March observations. The percentages of original variance explained by

the first threemodes of the forecasts are 45%, 14%, and 7%, while for the observations they are 21%, 10%, and 9%.
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to do better in most any case, as the strengths of associ-

ation (implying predictability) are represented directly,

regardless of interannual variability. A likely reason that

covariances lead to better corrected skills in precipitation

is that predictive skill is greatest in the tropics, where

ENSO effects are most prominent, and the mean and

variance of precipitation are also greatest in the tropics.

Covariance-based EOFs thus weight the region of

highest skill most heavily. As noted above in the cases

of Indonesia and eastern tropical Africa, locations with

higher initial skill, particularly when related to a known

source (e.g., ENSO), tend to be most amenable to CCA-

based skill increases. While temperature predictive skill

may also be higher in the tropics than elsewhere, its in-

terannual variability is lower in the tropics than else-

where, so covariance-based EOFs would work against

maximizing average skill.

A factor that might help account for the apparently

modest ability of CCA to improve the model anomaly

correlation skills for both precipitation and temperature

forecasts is the negative skill bias that can occur in cross

validation (Barnston and Van den Dool 1993), given the

small sample size (29 years) and the large areas of in-

herently low skill in many of the regions. This bias comes

about because, when the correlation over the full sample

of years is near zero, and one or more cases are held out

from the sample and used as the forecast targets using a

prediction model and climatology built from the re-

maining cases, the relationships in the remaining cases

are likely to be of opposite sense to those in the one or

more years held out. In other words, there is a comple-

mentarity and opposing relationship between the

in-sample and out-of-sample cases when the net re-

lationship in the full sample is negligible. Locations with

near-zero skill in the total sample can therefore have

strongly negative skill after cross validation. Table 8

shows average anomaly correlation changes with the

CCA correction, averaged over all eight models for

January–March precipitation forecasts made in early De-

cember, for various regions and the globe under three cross-

validation designs: 1) full cross validation (as used here), 2)

cross validation of the CCA regressionmodel but not of the

pre-CCAEOFs, which are derived from the full dataset and

used for forecasting all years, and 3) no cross validation at

all. Skills are higherwhen the pre-EOFs are not subjected to

cross validation while the CCA does use cross validation.

This option, while used in some other studies, was declined

because in real-time forecasting one does not have the op-

tion of forming EOFs that include observed data for the

year being forecast. Themuch higher skill resulting from no

cross validation at all illustrates the great extent of over-

fitting inherent in regression instruments and the necessity

of cross validation to get reasonable estimates of skill ex-

pected for independent forecast targets.

In conclusion, the general inability of the CCA to sys-

tematically improve the correlation skills of any of the

individual NMME models, but the strong improvements

in the RMSESS measure, mean that the answer to the

question posed in the title of this paper is ‘‘not much, with

just 29 years of data,’’ and suggests the presence of sys-

tematic biases largely not on the pattern level. Treatment

of such biases may be done by methods less multivariate

than CCA, such as principal component regression,

multiple regression, or even local simple regression, all of

which treat one predictand point at a time.
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